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H I G H L I G H T S

• The occupancy schedule and set-point distribution of a hotel building are obtained.

• The Markov Chain method is applied to simulate the occupancy.

• The Monte-Carlo model is proposed to simulate the set-point adjustment.

• The split-type air conditioner model in EnergyPlus is modified.

• Models can reflect the features of occupant behavior and split-type air conditioners.
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A B S T R A C T

Occupant behavior (OB) has been recognized as a significant factor that influences the energy consumed by the
occupants of a building. For buildings equipped with distributed air-conditioning systems, the stochastic in-
fluences of occupants are particularly salient. This paper presents a method for simulating the occupancy and air-
conditioning usage; it integrates the OB model with a modified distributed air-conditioning system in EnergyPlus
(E+). First, we develop a monitoring system that uses motion sensors and thermostats to measure the occupancy
and air-conditioning usage in a hotel building. Then, we use the Markov Chain method and a Monte-Carlo
stochastic model to simulate the occupancy and set-point adjustment, respectively. We modify the distributed
air-conditioning system in E+ to reflect the intermittent operation and temperature fluctuation characteristics of
split-type air conditioners (ACs). Finally, to demonstrate the applicability of the proposed method, we conduct a
simulation of a hotel building that integrates the OB model with the modified distributed air-conditioning
system. The results show that the method can incorporate the features of both the OB and the split-type ACs.
Significant differences (7.86%) can be observed in the energy consumption results between the original and
modified models. The modified E+ model can be used to perform a more accurate simulation for split-type ACs
with a shorter time step, integrating OB at the scale of an entire building.

1. Introduction

Buildings account for approximately 30% of global energy use [1].
Therefore, there is an urgent need for energy saving in buildings. With
the development of computer technology, building-energy simulation
has become a widely recognized method for evaluating the energy-
saving potential of various building-energy efficiency technologies and
for improving the energy consumption in building-energy systems.

A distributed air-conditioning system is widely used in various types
of buildings such as residences, offices, and hotels, owing to its

flexibility. It offers advantages that include easy adjustment, good
partial load performance, easy installation, and convenient energy
consumption measurement. It mainly uses direct-expansion (DX) coils
and has no intermediate heat exchange system, thereby providing a
shorter response time and less energy loss. Distributed air-conditioning
systems are usually divided into two types: constant-speed and variable-
speed. This study mainly focuses on a constant-speed distributed system
wherein the compressor switches between the on and off states so as to
cause small temperature fluctuations around the temperature set-point.

A certain number of studies based on distributed air-conditioning
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systems have explored the improvement of the coefficient of perfor-
mance (COP) and alternative refrigerants through experiments and si-
mulations. Joudi and Al-Amir [2] studied the steady-state-operation
characteristics of four refrigerants in a split-type AC system in a high-
temperature environment through experiments and simulation. El-
gendy [3] investigated the performance characteristics of split air
conditioners (ACs) using R-417A fluid (as compared with R-22) under
different indoor and outdoor conditions. Martínez et al. [4] coupled a
condensing coil with an evaporative cooling plate to improve the en-
ergy efficiency of a system by reducing the outdoor unit inlet air tem-
perature during summers. Nada and Said [5] adopted a computational
fluid dynamics (CFD) simulation to study the layout of an optimal
outdoor unit to avoid problems involving the high temperature of the
condensing coil and to improve system performance. Mohammed et al.
[6] designed a hybrid proportional-integral derivative (PID) controller
to control the fan speed and water mist flow rate for improving the
performance of a split air-conditioning system.

Some researchers have developed the static and dynamic simulation
models of a whole AC unit or each component of a split-type AC. Chen
et al. [7] established a dynamic simulation model for a household
compression refrigeration air-conditioning system considering the heat
and mass exchange between each component and the surrounding en-
vironment. St-Onge [8] performed laboratory tests for mini-split vari-
able capacity air source heat pump (VCASHP) performance and created
a VCASHP model in “TRNSYS”. Although the static and dynamic
models in various simulation platforms can basically reflect the op-
eration of a system, there are limitations in building-energy consump-
tion simulations that often require collaborative simulation with energy
simulation software. Therefore, there is a need for a simulation model
for engineers to better understand the operation behavior of split-type
ACs and to better estimate their energy consumption.

It is faster and more convenient to directly add or modify a corre-
sponding device model in existing building-energy simulation software
such as EnergyPlus (E+). The open source and modular features of E+
facilitate the addition of new simulation modules for developers. Some
researchers have developed or modified distributed air-conditioning
system models in E+ for specific purposes. A. Gomes et al. [9] estab-
lished a physical model for constant-speed ACs that can simulate loads
and the actual operation of ACs at a multi-room scale while considering
the on-off operation states and fluctuations in indoor temperature.
Nevertheless, the calculation of the building load is too simplistic, and
the operating characteristics of the constant-speed ACs are not con-
sidered comprehensively enough. Hong et al. [10] developed a new
variable refrigerant flow system (VRF) model in E+ and used measured

data to verify the model. Zhou et al. [11] developed a system module
for improving a single DX coil model in E+ and applied the module to a
typical commercial building model in China. However, the current
version of E+ has some blemishes in its distributed air-conditioning
model; it cannot present the intermittent operation and temperature
fluctuation characteristics of a split-type AC. This study analyzes the
calling logic of the E+ program and the calculation process of the split-
type AC model in E+. Then, the E+ software source code is modified to
reflect the operating characteristics of the split-type AC and the fluc-
tuations in room temperature.

For buildings equipped with flexible and controllable distributed
air-conditioning systems, occupant behavior (OB) significantly affects
building-energy consumption and is a leading source of uncertainty in
the prediction of building-energy usage [12]. Significant differences
have been observed in building-energy predictions based on energy
simulation results using different OB models. In other words, the per-
formance gap is mainly affected by the OB characteristics [13]. Wang
[14] investigated office buildings in Beijing with different air-con-
ditioning systems and found that the indoor temperature set-point and
the AC starting time were highly depended on the OB patterns. Gaetani
et al. [15] proved the influence of OB including occupant presence,
light use, equipment use, blind use, and temperature setpoint on
heating and cooling energy demands by evaluating newly-developed
impact indices based on simulation results. Ouyang and Hokao [16]
compared the electricity consumption of energy-conservation-trained
and untrained households and found that the average energy-saving
potential for energy-aware OB can reach 14.8%. Credible outcomes
from integrating interdisciplinary approaches to the study of OB in-
dicate that the potential behavioral energy savings range from 5 to 20%
[17]. Therefore, the impact of OB cannot be ignored in the study of
energy consumption in buildings.

The complexity of research based on OB arises from the uncertainty
of OB, the existence of multiple influencing factors, and limited amount
of measured data [18]. The way in which OB can be accurately and
effectively described remains worthy of in-depth study and exploration.
With the wide application of simulation software in recent years, in-
creasing attention has been paid to OB simulation. OB simulation
mainly includes four aspects [19]: (1) occupant monitoring and data
collection; (2) model development; (3) model evaluation; and (4) in-
tegration of OB models in building-energy modeling programs. A tra-
ditional energy simulation uses fixed profiles to describe occupancy,
lighting, equipment usage rate, and the temperature set-point of the air-
conditioning system in the building. However, unlike other determi-
nistic input parameters, OB tends to be random [20,21]. OB is related to

Nomenclature

Abbreviations

OB occupant behavior
AC air conditioner
DX direct expansion
COP coefficient of performance
CFD computational fluid dynamics
PID proportional integral derivative
VCASHP variable capacity air source heat pump
E+ EnergyPlus
VRF variable refrigerant flow
TUS time-use survey
EIR energy input ratio
PLR part load ratio
PLF part load fraction
RTF running time factor
FDD fault detection and diagnosis

Symbols

N number of observed values
q number of estimate parameters
Pn transition matrix at time n

tp ( )ij probability of transition from state i to state j at time step t
U random number
n t( )ij number of transitions from occupancy state i to state j
n t( )i number of rooms at occupancy state i at time t
X sample value
Qṫotal corrected capacity calculated according to the correction

curves, W
Power energy consumption per time step, W
ρX Y, Pearson correlation coefficient
cov X Y( , ) covariance between the two variables
σ standard deviation of the variable
E(X) expectation of the variable
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factors such as the environmental state and event at that time. More-
over, differences in perception and response to the environment also
lead to different behaviors [22,23]. Li et al. [24] conducted a survey
based on air-conditioning energy consumption in five residential
buildings in Beijing in summer and found that the consumption varies
considerably among households. They also revealed that the impact of
the indoor temperature set-point on air-conditioning energy consump-
tion is significant. If the indoor temperature set-point is increased from
25 °C to 26 °C, the air-conditioning energy consumption can be reduced
by approximately 23%.

With the progress of monitoring technology and data analysis
methods, researchers have proposed several methods for modeling OB,
occupancy information in particular. Ryu and Moon [25] developed an
occupancy prediction model based on the measured indoor environ-
mental data and occupancy history data using a hidden Markov model.
Yang and Becerik-Gerber [26] proposed a framework for simulating
occupancy based on indoor monitoring data (light, sound, motion,
carbon dioxide concentration, temperature, door magnet, etc.). The
accuracies of several modeling methods (regression, time series, pattern
recognition, stochastic process) were tested. These models were used in
an occupancy simulation of one or several rooms but were not verified
on a whole-building scale simulation.

Typical behavior pattern study is a common method in OB research.
To extract typical behavior patterns from diverse OBs, Yu et al. [27]
classified the influence of OB on energy consumption using cluster
analysis based on monitored energy consumption data. Abreu et al.
[28] adopted cluster analysis to obtain three types of energy usage
characteristics from the data obtained from a network survey and
constructed hourly schedules of energy use under three types. Ren [29]
used cluster analysis and a decision tree to classify heating usage be-
havior patterns into five types based on an indoor temperature curve.
However, this data mining method of extracting typical behavior pat-
terns is limited by the number of measured cases, and there is a lack of
description of the OB itself.

Various models of air-conditioning usage behavior have been es-
tablished in the existing research, including statistical models, data
mining models, and stochastic models. Yasue et al. [30] collected AC
usage data in residential buildings and used a sigmoid function to de-
scribe the relationship between indoor temperature and AC switching
probability. Schweiker et al. [31] measured the AC usage of 320 single
rooms in Japan and used logistic regression to establish a statistical
correlation between the switch-on probability of ACs and the average
outdoor temperature. Carmo [32] measured the heating energy con-
sumption in 139 houses and used clustering and regression analysis
methods to obtain three heating usage modes: high, medium, and low
demands. Tanimoto et al. [33] established a stochastic model based on
a two-state Markov Chain to predict the transition probability of an AC
state from on to off or from off to on through indoor and outdoor
temperatures. Wang [14] proposed a research framework and quanti-
tative description method. He considered OB as actions that change the
state of objects and introduced behavioral pattern and characteristic
parameters to simplify and quantify the description of all actions. For a
mathematical description of OB, he established an OB model based on a
conditional probability function. Haldi and Robinson [34] used good-
ness-of-fit as an indicator to select various influencing factors of OB and
established a regression model that was optimized by the Markov Chain
and survival analysis.

The existing research pays more attention to AC-switching beha-
viors, and there are fewer studies based on AC-adjusting behaviors. In a
study of the interactions of occupants with a thermostat, Moon et al.
[35] described the effect of adjusting the temperature set-point on air-
conditioning energy consumption in different climate zones using dif-
ferent schedules. Urban et al. [36] studied the effect of the temperature
set-point on energy consumption by randomly generating sample
schedules from measured data sets. Jian et al. [37] established a
threshold-based model, assuming that actions occur when

environmental factors are above or below a certain threshold. Through
the actual measurement and investigation of air-conditioning usage of
42 residential houses in Beijing, it was found that the room temperature
at the switch-on moment is generally 29 °C and that the temperature
set-point is usually 26 °C. However, there is a lack of OB simulation
models available for temperature set-point prediction on a whole-
building scale for a more accurate simulation of building-energy con-
sumption.

This study focuses on two aspects of OB: the occupancy and the
interactions of occupants with the thermostat. We establish a stochastic
model to simulate these two parts and incorporate them into a modified
distributed air-conditioning system module in E+. First, the scope of
the research based on OB in this study is defined (Section 2.1.1). Then,
we introduce a monitoring system to measure OB on a whole-building
scale (Section 2.1.2). Next, the Markov Chain method and Monte-Carlo
stochastic model are proposed to simulate the occupancy and set-point
adjusting behavior (Section 2.1.3 & Section 2.1.4). We then modify the
split-type AC model in E+ to reflect the operating characteristics of the
split-type AC (Section 2.2). The monitoring results of OB and simulation
results before and after the split-type AC model improvement are
analyzed (Section 3.1 & Section 3.2). In addition, a case in Shanghai is
presented to verify the validity of the modified split-type AC model
integrated with OB (Section 3.3). Finally, we discuss and explore the
advantages and limitations of this model (Section 4).

2. Methodology

2.1. Occupant behavior (OB)

2.1.1. Definition of research scope
In recent studies based on energy simulation, researchers have

concentrated on the impact of occupancy and OB on building-energy
consumption. The study of occupancy can be divided into four levels
[38]: (1) the number of occupants in a building; (2) occupancy (whe-
ther a space is occupied or not); (3) the number of occupants in a space;
(4) the space in which an occupant is located. Major OBs of interest
include light-switching, blind-adjusting, window-opening, and ther-
mostat-adjusting. This study concentrates on whether a space is occu-
pied or not and the adjustment behavior of an air-conditioning ther-
mostat.

In terms of spatial dimensions, the research based on OB in this
study mainly focuses on a simulation on a whole-building scale instead
of the behavior of a single individual or the change of a single room.
Therefore, in the simulation of OB, we do not consider the driving
factors of individual behavior; we only consider the distribution and
characteristics of the occupancy rate and the temperature set-point on a
whole-building scale.

2.1.2. OB monitoring
2.1.2.1. Occupancy rate. Adaptive OB monitoring is one of the most
common and well-developed methods for collecting OB data. The
monitoring methods for occupancy mainly include motion detection,
carbon dioxide concentration monitoring, camera monitoring, wearable
sensors, and smartphone location (with Wi-Fi connectivity). Motion
detectors are the most widely used sensors for detecting the occupancy
of a room [39], but motion sensors face difficulty in identifying
occupants who are sitting or standing still. To improve the accuracy
of detection, motion monitoring can be combined with carbon dioxide
concentration monitoring, seat pressure sensing, and other monitoring
methods.

In this study, we use motion sensors together with a hotel guest
room control system to detect the occupancy in a hotel building.
Because guests often forget to pull out the power card before leaving,
determining the occupancy of a room just by checking the power on-off
condition is not a reliable method. Therefore, it is necessary to detect
the occupancy of a room using a different method. Considering the
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privacy concerns in hotels, a non-intrusive monitoring method using
motion sensors is adopted. Each room has an ultrasonic motion detector
on the ceiling. When the ultrasonic motion detector is working, it emits
and receives ultrasonic waves. Similar to the Doppler effect, motion is
detected through deviations produced by acoustic emission and re-
ception. Additionally, magnetic detectors are installed on the doors to
detect the opening and closing of the doors. When a door movement is
detected, the sound wave motion detector in the room is activated and
it monitors the movement of the occupant in the room. If any detector
in the room detects an action, the room is considered occupied. Then,
the occupancy data is recorded in the database software “MySQL” for
subsequent processing.

2.1.2.2. Occupant's interactions with thermostat. The most common
method for collecting thermostat usage data is using a questionnaire
survey, but it is difficult to establish a detailed statistical model based
on a survey. Advanced thermostats already enable the recording,
storage, and transfer of data, thereby making it possible to record
thermostat adjustment behavior. In this study, we measure the
thermostat-adjusting behaviors of the occupants using thermostat
recording.

We can assume that each guest room has different guests every day,
so the daily data of each guest room can be regarded as a random
sample. For the probability distribution of the temperature set-point,
the number of parameters is 15, because the adjustable range of the
thermostat is 16–30 °C. To obtain statistically significant data, a
minimum sample size of 150 is required (N:q= 10:1) [40].

2.1.3. Simulation method of the occupancy rate
Owing to the randomness of OBs, the stochastic model can be used

to describe and simulate OBs. We choose a Markov Chain stochastic
method because it can not only reflect the randomness of the movement
of an occupant, but it can also comply with the overall trend of occu-
pancy. The Markov Chain can predict the next moment through the
current state and a transition matrix composed of transition prob-
abilities. For a Markov Chain with m states, the transition matrix at time
n is usually in the following form:

= =

⋯
⋯

⋯⋯⋯⋯
⋯

×

−

−

− − − −

P p

p p
p p p

p p p

( )

p

n ij m m
m

m m m m

11 12 1(m 1)

21 22 2( 1)

( 1)1 ( 1)2 ( 1)( 1) (1)

A Markov Chain Monte-Carlo method has been recognized for si-
mulating occupancy. Richardson et al. [41] used this method to simu-
late occupancy in a residential building based on a large amount of
survey data from a time-use survey (TUS). Widen and Wackelgard [42]
also adopted the Markov Chain method to randomly simulate the state
of occupancy. Unlike Richardson who used the number of occupants as
the state parameter, they used the ongoing activities of the occupants
including leaving, sleeping, and cooking, as the state parameters. The
data is also derived from the time schedule survey of the occupants. The
acquisition of the transfer matrix is the focus of this approach. In both
the studies mentioned earlier, the transfer matrix of the occupancy is
obtained by statistical data regression. In this study, considering each
room as a simulation object and the occupancy of a room as the state
parameter, we calculate an hourly transition matrix according to field
measurement so as to generate an hourly occupancy rate schedule. The
schematic for generating the occupancy rate is shown in Fig. 1.

The specific methods are as follows. First, to generate a Markov
Chain, we set the initial state. Supposing that we know the hourly oc-
cupancy rate of the entire building from field measurements, the initial
state of each room can be determined by the Monte Carlo method. For
example, a random number U (0,1) is generated for each room. If we
assume that the occupancy rate at 0:00 is 0.75, meaning 75 out of 100
rooms are occupied, the initial state of the room is considered occupied

if U is less than 0.75,; otherwise, the initial state is considered vacant.
To generate the hourly occupancy schedule, we need to calculate 24

transfer matrices for 24 h a day, each of which has a size of 2×2. An
example of transfer matrices is shown in Table 1. For a room, there are
2 possible states (occupied or vacant). From time step t to time step
t+1, the number of transitions from occupancy state i to state j is n t( )ij ,
and the number of rooms at occupancy state i at time t isn t( )i , where

∑=
=

t tn ( ) n ( )i j ij1

2

(2)

Then, the probability of transition from state i to state j at time step t
is as shown in Eq. (3).

=t
t
t

p ( )
n ( )
n ( )ij

ij

i (3)

From the occupancy state at time t and the transition matrix from
time t to time t+1, we can determine the state at time step t+1. We
generate a random number U (0,1) by the Monte-Carlo method and
compare U with the transition probability to determine the occupancy
state at time step t+1. This process is repeated until an hourly occu-
pancy schedule is generated for each room. In addition, according to
the occupancy schedule and the recommended hourly lighting and
equipment utilization rate schedule (from design standards for energy
efficiency in public buildings) [43], we can obtain the hourly lighting
and equipment utilization rate schedule for each room. When a room is
occupied, the usage rates of lighting and equipment follow the re-
commended value; otherwise, the usage rates are 0.

2.1.4. Simulation method of occupant's interactions with thermostat
This study focuses on the simulation of the interactions of the oc-

cupants with the thermostat on a whole-building scale. Because we can
obtain the indoor temperature probability distribution on the whole-
building scale from the field measurement, the Monte-Carlo method is

Fig. 1. Schematic for generating occupancy rate.
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applicable. The Monte-Carlo method mainly consists of two parts:
random sampling and random number generation.

In this study, the inverse transform algorithm of the direct sampling
method is chosen as the sampling algorithm. The principle of the in-
verse transform algorithm is as follows. If the probability distribution
function of a random variable X is f(x), and the cumulative distribution
function F(x) is a non-decreasing function, then the inverse function is
defined as

= ∊ ≥ ≤ ≤− y x a b F x y yF ( ) inf{ [ , ]: ( ) , 0 1}1 (4)

First, the inverse transform algorithm generates the random number
U; then, the sample value is the inverse of the cumulative distribution
function.

= − UX F ( )1 (5)

In terms of random number generation, true random numbers are
generated by means of physical methods and require considerably high
hardware costs and expenses. Therefore, we mathematically construct a
pseudo-random number that is as close as possible to the characteristics
of the true random number.

We can know the probability distribution of the temperature set-

point from measurement. For simplicity, we set the range of tempera-
ture set-point as − +μ σ μ σ( 2 , 2 ), that is, 23–27 °C. The probability of
each temperature set-point is as shown in Eq. (6):

=

⎧

⎨

⎪

⎩
⎪

=
=
=
=
=

x
x
x
x
x

f(x)

0.11, 23
0.21, 24
0.35, 25
0.22, 26
0.11, 27 (6)

We generate a random number U (0,1) through the Monte Carlo
method to select the minimum sample value X that satisfies Eq. (7). For
example, if the randomly generated U value does not exceed ∑ = f x( )k

k
k1 ,

the sample value is the value of the minimum variable satisfying this
condition.
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23, 0 (23) 0.11
24, 0.11 (23) (24) 0.32

25, 0.32 ( ) 0.67

26, 0.67 ( ) 0.89
27, 0.67 1

k k

k k

1
23

25

23
26

(7)

According to the above method, the simulation process for the set-
point is shown in Fig. 2. First, we read the occupancy status of each
room at the current time one-by-one. If the room is vacant, the set-point
at this hour is set to 40 °C, meaning that the AC is turned off. If the room
is occupied, we use Monte-Carlo method to generate two random
numbers to obtain two sample values by the method mentioned above
and set the two values as temperature set-points for each half hour.

2.2. Modification of split-type air conditioner (AC) model

A constant-speed split-type AC is intermittently operated. For ex-
ample, when the room temperature is higher than the temperature set-
point in a cooling condition, the AC keeps running until the room

Table 1
An example of occupancy rate transfer matrices.

Time State at time t State at time t+1

Vacant Occupied

0:00–1:00 Vacant 0.8360 0.1640
Occupied 0.0052 0.9948

1:00–2:00 Vacant 0.8151 0.1849
Occupied 0.0010 0.9990

2:00–3:00 Vacant 0.8986 0.1014
Occupied 0.0019 0.9981

Fig. 2. Schematic of temperature set-point simulation.
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temperature drops to a certain temperature (typically 0.5 °C or 1 °C)
below the set-point. The AC restarts when the room temperature rises
above an upper limit temperature (typically 0.5 °C or 1 °C above the set-
point), and the compressor returns to equilibrium pressure. The inter-
mittent operation causes the indoor temperature to fluctuate around the
temperature set-point. A constant-speed split-type AC runs at full load
during operation and cannot adjust the unit output. However, the
above-mentioned operation characteristics are not reflected in the split-
type AC model in E+. In fact, there is no separate split-type AC module
in E+ [44]. Therefore, we simulate a split-type AC model by setting the
corresponding heating and cooling DX coil in a unitary system. For a
constant-speed split-type AC, we choose a single-speed DX coil (Coil:
cooling, DX: single speed and Coil: heating, DX: Single Speed), and set
the outdoor fresh air volume to 0. A user must set the coil capacity,
sensible heat ratio, COP, and air flow ratio for the cooling DX coils. In
addition, the user must set five correction curves describing the capa-
city and efficiency at partial load including temperature versus capacity
correction, air flow ratio versus capacity correction, temperature versus
energy input ratio (EIR) correction, air flow ratio versus EIR correction,
and part load fraction (PLF) versus part load ratio (PLR). The energy
consumption per time step is calculated as follows:

= QPower ( ̇ )(EIR)(RTF)total (8)

Here, Qṫotal is the corrected capacity as calculated according to the
correction curves, andEIR is the corrected EIR according to the cor-
rection curves. A running time factor (RTF), which differs from the
general power calculation formula, is introduced here, and it is calcu-
lated as

= PLR
RLF

RTF

= + +

= + + +

or

d

RLF a b(PLR) c(PLR) RLF

a b(PLR) c(PLR) (PLR)

2

2 3 (9)

=
sensible cooling load

steadystate cooling capacity
RLR

The RTF reflects the characteristics of the intermittent operation of
the constant-speed split-type AC to a certain extent, but the calculated
energy consumption and room temperature changes are different from
the actual results.

To modify the split-type AC model, we need to know the call logic of
E+. In E+, the split-type AC is a part of a zone equipment module.
Therefore, a heating, ventilation, and air conditioning (HVAC) module
will call the zone equipment module at each time step so as to call the
unitary system module including the split-type AC. Fig. 3 shows that the
unitary system contains multiple calling functions including GetUni-
tarySystemInput, InitUnitarySystem, UpdateUnitarySystem, and, most
importantly, ControlCoolingSystemtoSP, which calculates the PLR of
the system at the current time step and passes this value to the fol-
lowing calculation function.

In this study, we modify the RTF calculation to reflect the inter-
mittent operation of the split-type AC model. The following four points
need to be noted and modified:

(1) The RTF is determined by the PLR; thus, we modify the PLR instead.
If the PLR is greater than a certain threshold, we set the current PLR
to 1, meaning that the AC operates at full load. When the PLR is less
than the threshold, we set the PLR to 0, meaning that the AC is off.

(2) In a warm-up stage, the judgment procedure is not employed in
order to avoid a situation wherein the parameters at the same
moment in adjacent days converge slowly because of the on-off
operation of the AC.

(3) For a split-type AC, it takes approximately 3min for the pressure to
return to equilibrium before restarting. Therefore, the time step is
set to 3min in the simulation so as to ensure that when the split-

type AC is off, it needs at least 3 min to restart.
(4) There is a statement in the E+ program for judging the difference

of zone temperatures between two adjacent time steps. If the tem-
perature difference exceeds 0.3 °C, the simulation step of the latter
time step is halved. This is repeated until the temperature differ-
ence of the adjacent time step does not exceed 0.3 °C. Because of the
intermittent operation of the split-type AC, the indoor temperature
fluctuates around the temperature set-point, and the temperature
change between the two adjacent time steps is likely to be greater
than 0.3 °C. Therefore, for the simulation of the split-type AC
model, the temperature difference between the two time steps is not
judged.

3. Results and discussion

3.1. OB monitoring

3.1.1. Occupancy monitoring
Occupancy data was obtained from the monitoring system of the

four-star hotel located in downtown Shanghai, and 315 single rooms
were equipped with the monitoring system. Data recorded by the
monitoring system from May 20 to September 30, 2017, was selected
for analysis. We exported the occupancy data from the MySQL database
and processed it. Each room was marked “1” if occupied, and “0” if
vacant. The average hourly occupancy rate of all rooms was considered
the hourly occupancy rate at the whole-building scale as shown in
Fig. 4.

Fig. 4 shows that the occupancy rate basically reaches a plateau at
night. From 7 am to 10 am, which is the time when a large number of
guests check out, the rate drops significantly. From 10:00 am to 11:00
am, as some new guests check in and some guests return to their rooms,
the occupancy rate increases. From 12 am to 1 pm, owing to the large
number of check-outs by hotel guests, the occupancy rate drops sig-
nificantly. From 2 pm to 6 pm, because guests gradually leave the room,
the rate drops gradually. From 7 pm, the rate increases significantly,
indicating that the guests return to the hotel after a day of travel. This
curve is consistent with our general understanding, which shows that
the data from the hotel is representative.

3.1.2. Occupant interaction monitoring using thermostat
Occupant interactions can be directly monitored using a thermostat

Fig. 3. Call order of unitary system in EnergyPlus.

J. Xie, et al. Applied Energy 256 (2019) 113914

6



sensor. Because this study focuses on the behavior during the cooling
season, data from June 1 to September 30, 2017, were selected for
analysis. To avoid the impact of multiple people in a single room and
ensure the independence of events, only the data of single rooms in the
hotel (a total of 315 rooms) were selected for analysis. The sample size
of the hotel is far beyond the minimum requirement, so the results can
be considered credible.

The distribution of the temperature set-point of the thermostat for
all the rooms of the hotel in cooling conditions is shown in Fig. 5. Fig. 5
shows that there is no evident distribution of the temperature set-point.

In cooling conditions, guests tend to set the temperature to a lower
value such as 16, 20, or 22 °C. Because 22 °C is the default set-point
value on the thermostat panel, many guests tend to maintain it. At the
same time, certain guests raise the temperature set-point. The change of
the temperature set-point affects the indoor temperature, so we pay
attention to the corresponding indoor temperature distribution when
the thermostat is adjusted; this is shown in Fig. 6. A comparison of
Figs. 5 and 6 reveals that although people tend to adjust the set-point to
a lower temperature, they prefer an indoor temperature above the set-
point. We infer that the thermostat adjustment behavior reflects a lack
of understanding of the actual operation of the air-conditioning system.
People tend to think that the lower the set-point is, the faster the room
temperature drops, which is also proposed by Kempton [45]. In addi-
tion, the difference between the two distributions may also be caused
by the deviation of the occupants' perception of temperature from the
actual room temperature.

Fig. 6 shows that the selection of the room temperature has a
probability distribution that approximates the normal distribution
whose average is 24.95 °C and standard deviation is 1.36 °C. More than
94% of the occupants prefer the indoor temperature to be in the range
of 23–27° C, which is consistent with our general understanding.

3.2. Simulation of the modified split-type AC model

We monitored the temperature and AC power changes on the days
when the AC was turned on using a smart socket and a temperature
recorder in a room equipped with the split-type AC. Fig. 7 shows that
the room temperature drops rapidly after the AC is turned on, and the
AC continuously operates for a prolonged period until the room tem-
perature drops below the set-point. Thereafter, the AC intermittently
operates to maintain the room temperature by fluctuating around the
set-point. The measured results confirm the characteristics of the op-
erating characteristics of the split-type AC and the room temperature
fluctuations described above.

We compare the simulation results of the split-type AC model before
and after the modification to verify whether it can effectively reflect the
characteristics of a split-type AC. The simulation model we built in
DesignBuilder is an office building model as shown in Fig. 8. We focus
on four rooms with different orientations (marked with an asterisk). All
rooms have the same temperature set-point, so the inner wall can be
regarded as adiabatic. Each room has a unitary system mainly com-
posed of a single-speed heating and cooling DX coil and a fan. The input
parameters comply with the “Design Standard for Energy Efficiency of
Public Buildings of China” as shown in Table 2. The indoor occupancy,
lighting, and equipment schedules are shown in Fig. 9. The simulation
period is from June 1 to Sept 31, 2017.

The simulation results of the original model and the modified model

Fig. 4. Monitoring results of hourly occupancy rate of the hotel.

Fig. 5. Monitoring results of temperature set-point distribution.

Fig. 6. Monitoring results of room temperature probability distribution.
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are shown in Figs. 10 and 11, respectively. The figures show the PLR
and indoor temperature of an occupied room facing the east on a day in
winter (July 15). Although the results in Fig. 10 can reflect the overall
operation of the AC and the change of PLR in one day, they cannot
reflect the on-off characteristics. In Fig. 11 shows that the indoor
temperature drops rapidly after the AC is turned on at 7:00; then, it
fluctuates around the set-point. The PLR is 1 when the AC is turned on,
and the PLR is 0 when the AC is turned off. By comparing the simulation
results before and after the improvement, we observe that the improved
model can better reflect the on-off characteristics of the split-type AC.

Table 3 demonstrates a comparison of the monthly energy con-
sumption between the original model and the modified model. The
difference between the simulation results of the original and modified
models is 0.39%, which is significantly less than the simulation error
limit of 5%. This indicates that the modified model can realize a more
detailed simulation of the split-type AC on a smaller time scale than the
original model without deviating from the calculated energy con-
sumption results of the two models. Fig. 12 shows a comparison of the
monthly energy consumption results for rooms with different orienta-
tions between the original model and the modified model. The energy
consumptions of the orientations are different, and the energy con-
sumption of rooms facing the east or west is higher than that of rooms
facing the north or south in the cooling season; this is consistent with
the results in [46].

3.3. Modified split-type AC model integrated with OB

3.3.1. Case study
A hotel building simulation is performed to verify the improvement

of the modified split-type AC model due to the integrated OB model. We
build a hotel model with DesignBuilder. The hotel has 7 floors wherein
the 2nd to 6th floors have guest rooms. There are 100 guest rooms
evenly distributed on 5 floors. The appearance of the model is shown in
Fig. 13, and the plane schematic of a standard floor is shown in Fig. 14.
The model is L-shaped with a 2-m-wide aisle and a uniform room size of
5m×5m. All areas are air conditioned, and each guest room is
equipped with a split-type AC system, whereas other areas use ideal
load systems.

Fig. 7. Monitoring results of room temperature and air conditioning power changes from 19:00 July 23rd to 8:00 July 24th.

Fig. 8. Geometry rendering and plan of the EnergyPlus Model.

Table 2
Main input parameters of the model.

Area of each room 25m2

Window-wall ratio 0.5
Story height 3.5m
Envelope U-value (W/(m2 K)
Roof 0.5
Exterior wall 0.8
Exterior window U-value (W/(m2 K) 1.96

Transmission coefficient of visible
light (VT)

0.74

Solar heat gain coefficient (SHGC) 0.69
Indoor load Lighting (W/m2) 7

Equipment (W/m2) 15
Occupancy (person/room) 2

Design indoor temperature (°C) 25
Design indoor relative humidity

(%)
40–60
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The input parameters are determined according to the “Design
Standard for Energy Efficiency of Public Buildings of China”. The si-
mulation period is from June to September of the cooling season.
Similarly, the temperature set-point of the auxiliary space is 25 °C,
which is the average of the probability distribution of indoor tem-
peratures in the hotel. The main input parameters of the model are the
same as those in the former simulation as shown in Table 2. The AC
system parameters are shown in Table 4.

Fig. 9. Simulation input of indoor occupancy, lighting, and equipment utilization rate schedule.

Fig. 10. Simulation results of an east-facing room on design day by original split-type AC model.

Fig. 11. Simulation results of east-facing room on design day by modified split-type AC model.

Table 3
Comparison of monthly energy consumption as calculated by the original model
and the modified model.

Type Air conditioning energy consumption (kWh) Percentage of
difference

June July August September Total

Modified 308.32 435.75 470.26 271.39 1485.72 0.39%
Original 310.28 430.20 471.77 267.63 1479.88
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3.3.2. Simulation of OB
In this section, we use the OB simulation method introduced in

Section 2.1.3 and Section 2.1.4 to generate schedules for each room
including the occupancy schedule, temperature set-point schedule, and
lighting and equipment utilization rate schedule.

The occupancy rate schedule is obtained using the Markov Chain
method. The lighting and equipment utilization rate schedule follows
the recommended schedule according to the design standards for the
energy efficiency of public buildings and the occupancy schedule. The
air-conditioning set-point schedule is obtained using the Monte-Carlo
method.

Fig. 15 shows the occupancy, lighting, and equipment utilization
rate schedule for rooms with different orientations on July 1. The dif-
ferent occupancy, lighting, and equipment utilization rate schedules in
different rooms reflect the randomness and diversity of OBs. A Markov
Chain has “memory” that indicates that the state of occupancy of a
room at any instance of time is related to the state of the previous in-
stance. In addition, there is a transition matrix every hour, so that the
change in occupancy status is time-related. The lighting and equipment
utilization rates follow the occupancy change, which reflects their re-
lationship.

Fig. 16 shows a comparison of the measured hourly average occu-
pancy rate and the simulated hourly average occupancy rate of the 100
rooms. Both values and variation trends are almost the same, thereby
indicating that the randomly-generated average occupancy rate at the
whole-building scale can generally reflect the real occupancy rate.

To test whether the simulated occupancy rate curve and the real
occupancy rate curve are statistically consistent, we adopt a Pearson
correlation coefficient. The Pearson correlation coefficient between the
two variables is calculated as follows:

Fig. 12. Comparison of monthly energy consumption for rooms in different orientations as calculated by the original model and the modified model.

Fig. 13. 3D view of the hotel model.

Fig. 14. Plane schematic of each floor.

Table 4
Main input parameters of the air conditioner (AC) system.

Parameters Value

COP 3
Rated cooling capacity of coil Autosize
Sensible heat ratio of coil
Rated flow rate of coil
Correction curves for coil capacity and EIR Default
Outdoor fresh air volume 0
Fan type Constant speed fan
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Fig. 15. Simulation results of schedules for guest rooms in four orientations on July 1.
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Here,

cov X Y( , )represents the covariance between the two variables;
σX represents the standard deviation of the variable X;
σY represents the standard deviation of the variable Y.

The Pearson correlation coefficient lies in the range [−1, 1]. The
closer the value is to 0, the less is the correlation between the variables;
the farther it is from 0, the higher is the correlation. The Pearson cor-
relation coefficient between the two groups of occupancy rate data
calculated by the above formula is 0.998; this indicates that the two
groups are highly correlated.

Fig. 17 shows the air-conditioning set-point schedule and occupancy
rate schedule for a room facing east on July 1. Similar to the lighting
and equipment utilization rate schedule, the set-point schedule in each
room also follows the occupancy schedule. It is evident that the AC is
turned on only when the room is occupied. When the room is vacant,
the set-point is 40 °C; when the room is occupied, the random genera-
tion of the set-point is carried out after every half hour to reflect the
randomness of OBs.

We compare the set-point probability distribution obtained using
the Monte-Carlo method with the measured probability distribution.
Table 5 demonstrates that they are basically the same. Similarly, we use
the Pearson correlation coefficient to test their correlation and the
coefficient is 0.997, thereby indicating that the two groups of variables
are highly correlated.

3.3.3. Simulation of modified split-type AC model integrated with OB
This section presents the simulation results of the modified split-

type AC model integrated with the OB model. Fig. 16 shows a com-
parison of the indoor average temperature and temperature set-point in
an east-facing room for a half-hour period on July 14 as simulated by
the improved split-type AC model. The figure shows that when the AC is
off (set-point at 40 °C), the room temperature gradually rises to a high
temperature. When the AC is turned on, the indoor set-point is ran-
domly generated after every half an hour. In Fig. 18, the set-point curve
and the room temperature curve basically coincide, thereby indicating

Fig. 16. Comparison of occupancy rate between simulation and measurement.

Fig. 17. Simulated occupancy and set-point schedule of an eastern-facing guest room on July 1.

Table 5
Comparison of probability distributions from measurement and simulation.

Set-point
(°C)

Probability distribution from
measurement

Probability distribution from
simulation

23 0.11 0.11
24 0.21 0.21
25 0.35 0.37
26 0.22 0.21
27 0.11 0.11
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that the room temperature can change based on the set-point in most
cases. In some cases, owing to the limited output of the AC, it is im-
possible to cool the indoor air to the set-point within a short duration of
time, so that the indoor temperature curve and the set-point curve are
separated. Overall, the improved model is able to simulate the random
variation in room temperature following the set-point schedule.

Fig. 19 shows the operation of the split-type AC and the indoor
temperature of an east-facing guest room on July 14. When the room is
occupied, the indoor temperature fluctuates around the set-point. When
the room is vacant, the PLR is 0 and the AC is switched off; thus, the
room temperature rises rapidly. When the set-point is higher, the PLR
curve appears to be “sparser”, which is caused by the longer shutdown

and shorter start-up times of the AC. Similarly, when the set-point is
lower, the PLR curve is “tighter”, because the AC needs to turn on and
off more frequently to maintain the indoor temperature around the set-
point. The simulation results show that the combination of the modified
split-type AC model and the OB model can not only reflect the ran-
domness of the occupancy rate and thermostat-adjusting behavior but
can also reflect the on-off characteristics of split-type AC and the re-
sulting fluctuations in indoor temperature caused by them.

It is necessary to verify whether the simulation method combining
the OB model and the modified AC model differs from the original si-
mulation method. Therefore, we set a comparison case without sto-
chastic modelling of OB wherein the occupancy and set-point schedules
are determined according to the standard. Table 6 compares the energy
consumption results calculated in the two cases; it demonstrates the
impact of the integration of the OB model on the lighting and equip-
ment energy consumption because this consumption depends on oc-
cupancy. The difference in energy consumption of AC is relatively small
because it is affected by a variety of factors that include the tempera-
ture set-point, occupancy, and other indoor loads. The difference in
total energy consumption results between the two cases is 7.86%,
which exceeds the simulation acceptance error. Therefore, it is neces-
sary to use the simulation method combining the modified split-air type
AC model and OB model.

Fig. 18. Simulation results of temperature set-point and room average temperature of an eastern room calculated by the original and modified model on July 14th.

Fig. 19. Simulation results of the state of air conditioner (AC) and indoor temperature of an eastern room on July 14.

Table 6
Comparison of energy consumption from June to September in the two cases.

Energy consumption
type

Modified
(kWh)

Original
(kWh)

Percentage of
difference

Cooling 63,452 65,874 3.68%
Lighting 7935 9821 19.20%
Equipment 5258 9150 42.54%
Fan 31,762 32,807 3.19%
Total 108,407 117,652 7.86%
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4. Conclusion and future work

OB significantly influences the energy consumed by the occupants
of a building. Field measurements in this study indicate that the in-
fluences of occupancy and OB on air conditioning are not deterministic
but are stochastic with the changing schedule of occupancy, tempera-
ture set-point, etc. In this study, a stochastic model is proposed to si-
mulate occupancy based on the Markov Chain method that can illus-
trate the randomness of occupancy. Using a Monte-Carlo stochastic
method, thermostat-adjusting behaviors are simulated at the scale of an
entire building, and a temperature set-point schedule is generated for
each room. Furthermore, the split-type AC has characteristics of inter-
mittent operation that are reflected by the fact that the measured room
temperature repeatedly oscillates around the temperature set-point. To
consider this characteristic in the simulation of the split-type AC, this
study modifies its module in E+. The following are the main results:

(1) A monitoring system that combines motion sensors and a hotel
guest room control system is developed to measure the occupancy
of each guest room in the hotel building, and a general occupancy
schedule of the building is obtained. The changes in the measured
occupancy rate are consistent with our general understanding.

(2) The probability distribution of the AC temperature set-point and the
indoor temperature of the hotel building during the cooling season
is obtained using the data recorded by the thermostat. The choice of
the temperature set-point does not have a significant distribution;
however, the preference for room temperature has a distinctly
normal distribution. Most customers tend to keep the room tem-
perature between 23 and 27 °C.

(3) The proposed stochastic model based on the Markov Chain and
Monte-Carlo methods is suitable for the simulation of occupancy
and thermostat-adjusting behaviors. The model can demonstrate
the randomness of OBs and reflect the actual OB.

(4) The split-type AC module in E+ is modified such that the simula-
tion results reflect the on-off characteristics of the AC and indoor-
temperature fluctuation in actual operation.

(5) A simulation of a hotel building that integrates the OB model with
the modified split-type AC model is conducted to verify the im-
provement and applicability of the model. The results show that the
model can reflect both the randomness of OBs and the room tem-
perature fluctuations around the temperature set-point through the
AC on-off control. The energy consumption results of the modified
split-type AC model, together with the OB model, differ sig-
nificantly from the original simulation methods by 7.86%, thereby
indicating the necessity for the integration of the OB model.

The primary contribution of this study is the presentation of an
integrated approach for estimating the occupancy and the influence of
OBs on air conditioning at the scale of an entire building and accurately
simulating the improved split-type AC in E+ with a shorter time step.
Besides the direct application in the simulation of energy consumed by
the occupants of a building, the developed model can be considered for
a number of practical applications such as energy demand response and
fault detection and diagnosis (FDD). When evaluating a demand re-
sponse strategy, the energy consumption simulation software is re-
quired to reflect the change of the indoor temperature and the energy
demand of the equipment at a short time step. Therefore, the improved
module that is capable of reflecting the energy consumption behavior
more accurately must have a higher application value for the demand
response. In the field of FDD, a model that can reflect the actual op-
eration of distributed ACs is appropriate for use as the algorithm of a
model-based diagnostic method.

Certain unresolved issues and related extensions of the present
study are worth exploring. The scope of OB research in this study is
limited to the whole-building scale, and the simulation is conducted
based on the statistical data of the building. Therefore, it is impossible

to accurately depict and simulate individuals or individual rooms. To
simulate individual behaviors, further monitoring is needed, and the
driving factors of individual behavior must be considered. In addition,
more accurate measured data are needed to verify the energy con-
sumption simulation of the modified model in the future. Finally, the
split-type AC compares the return air temperature with the temperature
set-point to control the operation of the unit. Therefore, the on-off logic
of the split-type AC model still needs to be improved for better accu-
racy.
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